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Abstract 
 
       Cairo metro network is one of the major national projects in Egypt. It aimed at 
developing underground transportation system to solve the severe traffic problems in 
Greater Cairo which includes 3 crowded governorates; Cairo, Giza and Qalyubia. The 
project started in the last decades of the twentieth century where 2 lines were 
executed. In this century, the project is expanding and more lines are constructed. The 
tunnel constructed for Cairo Metro Line 3 has a circular cross section that consists of 
a precast segmental lining thickness of 0.40 m. This paper presents a parametric study 
on the effects of seismic waves on the tunnel structure through numerous simulations 
employing the finite – element analysis. Full dynamic analyses were performed 
employing three different earthquake motions as well as the effect of train-induced 
dynamic load. Also, the induced tunnel straining actions were studied. The analysis 
of soil-structure interaction was done using the commercial software PLAXIS®. The 
results proved that the 0.40 m thick circular cross section can safely sustain the 
expected static, dynamic and seismic stresses. 
 
INTRODUCTION 
 
Loads induced by ground shaking are different in, above and below the ground 
structures. While surface structures are loaded mainly by inertial forces in relation to 
structural masses, the underground structures, due to the high grade of constraint, 
very low inertial forces are experienced. In Table 1 the major conceptual differences 
in handling the two phenomena are resumed. Seismic loads due to pure soil shaking 
in underground structures are thus induced by the relative displacements caused in the 
medium by the seismic wave propagation.  The possible loads induced by seismic 
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design. It should be mentioned that the tunnel passes through the city of Cairo which 
is located at the third seismic zone according the Egyptian Code, ECP201(2012). The 
expected peak ground acceleration in this zone is 0.15g. Therefore, it can be stated 
that the concrete cross section of 40 cm can safely sustain the expected values of 
internal forces due to static, dynamic and earthquake loads. 
 
 
Table 3. PLAXIS® model soil dynamic parameters for Loma Prieta earthquake 

Soil 
Type 

G(dyna)
(MPa) D% αR βR 

Fill 17.2 3.64 0.47 0.002114
Sand  48.718 7.14 0.922 0.004147

Gravel 
and 

Sand 
165.94 4.443 0.5737 0.00258 

Sand  118.9 5.894 0.761 0.00342 
 
 
Table 4. PLAXIS® model soil dynamic parameters for Imperial earthquake 

Soil 
Type 

G(dyna)
(MPa) D% αR βR 

Fill 12.156 6.72 0.868 0.00392
Sand  22.478 14.914 1.93 0.00871

Gravel 
and 

Sand 
95.234 9.248 1.194 0.00533

Sand  43.214 14.6 1.886 0.0086 
 
 

Table 5. PLAXIS® model soil dynamic parameters for Northridge earthquake. 
Soil 

Type 
G(dyna)
(MPa) D% αR βR 

Fill 14.8 4.8 0.62 0.0028 
Sand  31.925 11.591 1.5 0.00677

Gravel 
and 

Sand 

117.27 7.63 0.985 0.0044 

Sand  59.7633 11.94 1.542 0.007 
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• Use of a hysteretic damping model to represent the soil/rock degradation during 
seismic ground motions is reasonable for the dynamic analysis of the Cairo Tunnel, 
and can appropriately capture the anticipated ground response. 
• Dynamic analysis can produce more realistic results since it can account for various 
load combinations considered in the tunnel design. 
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